Schimmelpilzschäden vermeiden – ausreichend Wärme dämmen

Besser innen dämmen – oder einfach zu riskant?

Nicht nur auf den Wärmeschutz kommt es an!

Innendämmsysteme ganzheitlich betrachtet – aus Schäden lernen

Nicht nur auf den Wärmeschutz kommt es an!

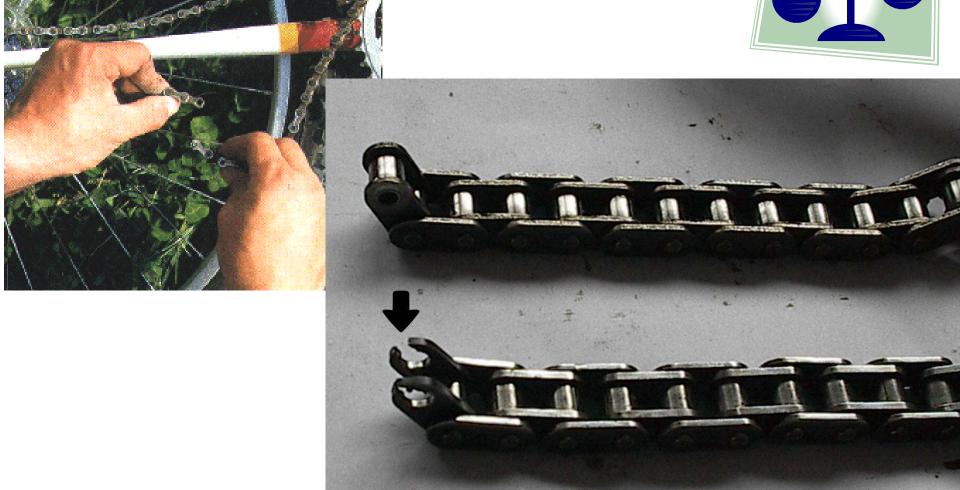
Innendämmsysteme ganzheitlich betrachtet – aus Schäden lernen

Schimmelpilz ohne Innendämmung

Schimmelpilze benötigen Nährstoffe + Feuchtigkeit

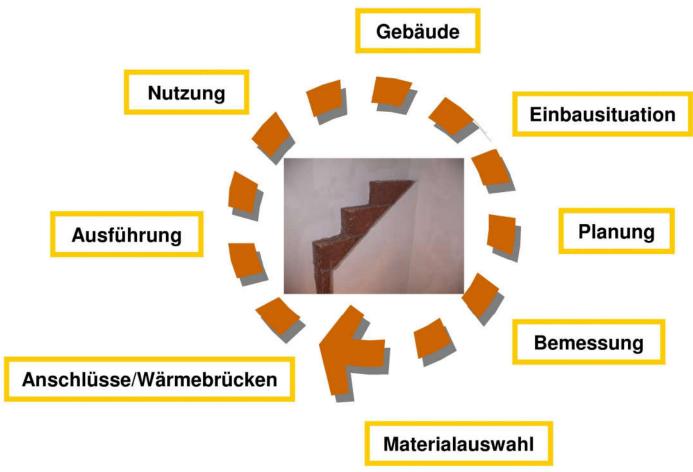
Branchentage des VDPM e.V. am 28./29.11.2018 in Leipzig: Besser innen dämmen – oder einfach zu riskant?

Symptomerkennung - Ursachenermittlung

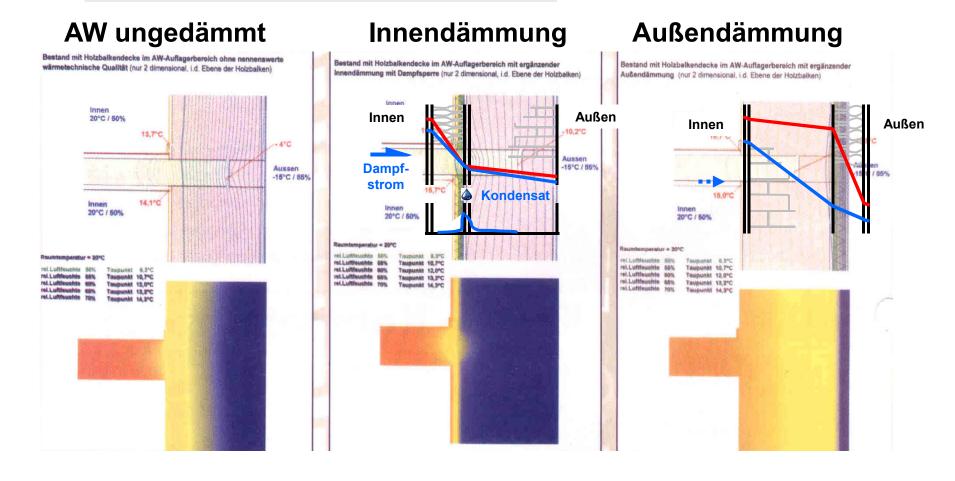

Bildquelle: Gerhard Bürkli, Neuenkirch (CH)

Aufklärung von Schäden

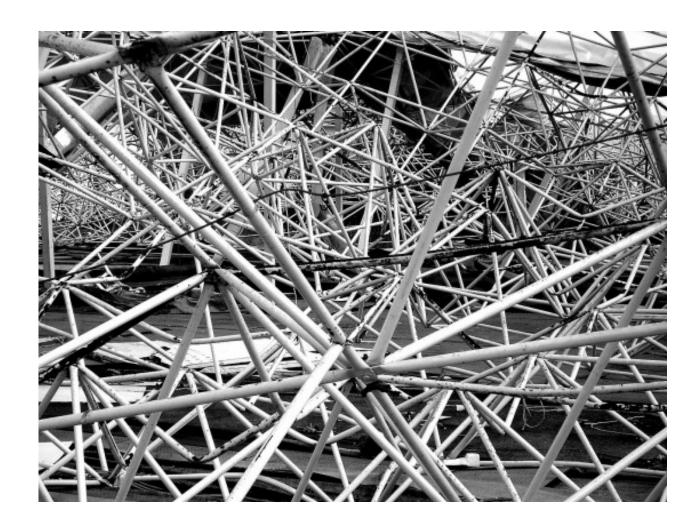
"Die Kette reißt am schwächsten Glied." ...



Aufklärung von Schäden – Prävention

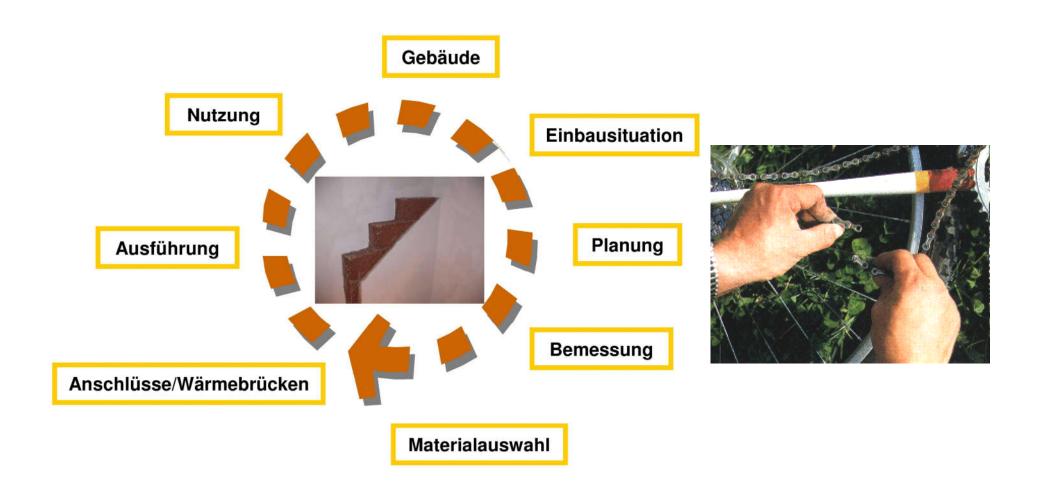

Bewertung der Prozess-"Kette" Innendämmung

Nachträgliche Wärmedämmung

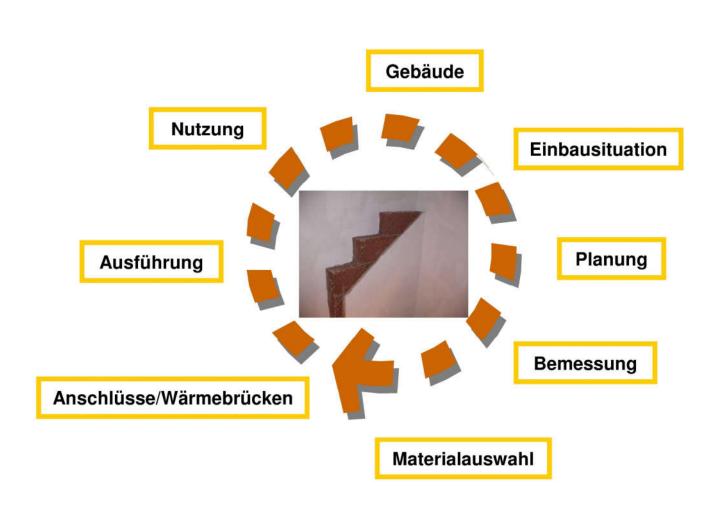


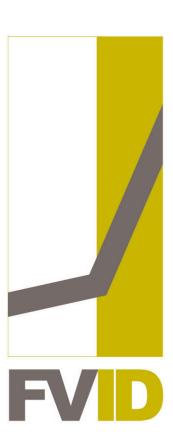
Vernetzung der Einflussfaktoren für Innendämm-Systeme

Innendämmung ist komplex ...



Innendämmung ist komplex ... man verliert die Orientierung


Bewertung der Prozess-"Kette" Innendämmung



Technische Betrachtung von Innendämmsystemaufbauten

Bewertung der Prozess-"Kette" Innendämmung

Gründung: 31.08.2011

Sitz: Frankfurt am Main

<u>Internet:</u> www.fvid.de

Bewertung der Prozess-"Kette" Innendämmung



Nicht nur auf den Wärmeschutz kommt es an!

Innendämmsysteme ganzheitlich betrachtet – aus Schäden lernen

Typische Schäden bei nachträglicher Innendämmung

Systematische Einteilung von Schadenskategorien

Schadensparameter		Sachschaden Gehäude	Personenschaden	
Feuchte- und		Feuchtigkeit von außen		
Wärmeschutz _{Nutzung}		Behinderte Austrocknung		
		Kondensation durch Diffusion Einb	Schimmelp <mark>i</mark> lzrisiko	
		Kondensation durch Konvektion		
		Kondensation an Anschlüssen		
Schall <mark>schutzuhrung</mark>		Verschlechterte Schalldämmung	Lärmbelä <mark>s</mark> tigung	
		Raumakustik	Physiologischer Einfluss	
Brandschutz		Verschlechterter Feuerwiderstand	Körperverletzung	
Material		Emi <mark>ssionen in</mark> Raum <mark>lu</mark> ft	Gesundheit	
Anschlüsse/Wärmebr		ücken	Geruchsbelästigung	
		Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit	
		Risse, Hohlstellen, Ablösungen	Körperverletzung	
??		??	??	

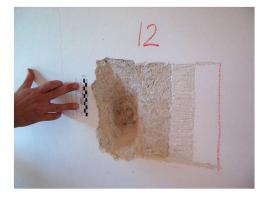
Typische Schäden bei nachträglicher Innendämmung

Systematische Einteilung von Schadenskategorien

Schadensparameter		Sachschaden Gehäude	Personenschaden	
Feuchte- und		Feuchtigkeit von außen		
Wärmeschutz i	Nutzung	B <mark>ehinderte Austroc</mark> knung		
		Kondensation durch Diffusion Einb	Schimmelpilzrisiko	
		Kondensation durch Konvektion		
		Kondensation an Anschlüssen		
Schall <mark>schutzührung</mark>		Verschlechterte Schalldäm <mark>mu</mark> ng	Lärmbelä <mark>stigung</mark>	
		Raumakustik	Physiologischer Einfluss	
Brandschutz		Verschlechterter Feuerwiderstand	Körperverletzung	
Material		Emissionen in Raumluft Bem	Gesund <mark>h</mark> eit	
Anschlüsse/Wärmebr		ücken	Geruchsbelästigung	
		Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit	
		Risse, Hohlstellen, Ablösungen	Körperverletzung	
??		??	??	

Ablaufschema Orientierende Bauwerksbesichtigung Überblick Untersuchungs-/Diagnoseaufwand **Bestands- und Schadensaufnahme** Begehung, Unterlagen, Archiv Untersuchungsplanung Vorgehensweise, Methoden, Kosten **Untersuchungen vor Ort und im Labor** Mauerwerksart, Baustoffe, Baustoffe, Feuchte+Salze **Bewertung** Instandsetzungsplanung

WTA-Merkblatt 4-5-99/D



BESTANDSAUFNAHME = SammeIn von Daten und Fakten

Ablaufschema Orientierende Bauwerksbesichtigung Überblick Untersuchungs-/Diagnoseaufwand **Bestands- und Schadensaufnahme** Begehung, Unterlagen, Archiv Untersuchungsplanung Vorgehensweise, Methoden, Kosten **Untersuchungen vor Ort und im Labor** Mauerwerksart, Baustoffe, Baustoffe, Feuchte+Salze **Bewertung** Instandsetzungsplanung

Anerkannte Regeln der Technik – WTA-Merkblätter

Innendämmsysteme im Detail

Praxis-Handbuch Innendämmung

Planung – Konstruktion – Details – Beispiele. Hrsg. vom Fachverband Innendämmung e. V. 2016. DIN A4. Gebunden. Ca. 400 Seiten mit 323 Abbildungen und 72 Tabellen. € 89.– Innendämmungen sind im Bestand eine gute Möglichkeit, Gebäude nachträglich zu dämmen und deren Energieeffizienz nachhaltig zu verbessern, z. B. bei denkmalgeschützten Gebäuden oder besonders erhaltenswerten Fassaden, Fachwerk, Sichtmauerwerk oder -beton sowie Eigentumswohnungen. Innendämmungen erfordern wie alle Systemaufbauten eine sorgfältige Planung, Bemessung und Ausführung sowie besonderes Fachwissen.

Das Praxis-Handbuch erläutert die verschiedenen Innendämmsysteme im Detail. Vor- und Nachteile sowie die Eignung für unterschiedliche Anwendungsbereiche werden dargestellt. Anhand von typischen Bestandskonstruktionen und Kriterien hilft das Buch so bei der Auswahl der richtigen Lösung.

Zudem helfen **Zeichnungen und Fotos** zu allen wichtigen Anschlüssen und schwierigen konstruktiven Detailpunkten bei der sicheren, schadenfreien Umsetzung in der Praxis.

Aus dem Inhalt:

- Grundlegendes zur Innendämmung
- Rechtliche Hintergründe und Anforderungen
- Bauphysikalische Grundlagen und Randbedingungen
- Werkstoffe und Innendämmsysteme
- Innendämmsysteme im Detail

- Planung und Bemessung
- Ausführung
- Qualitätssicherung und Monitoring
- Praxisbeispiele und Referenzprojekte
- Nachhaltigkeit, Lebenszyklus und Gesundheit
- Forschung und Entwicklung

Zahlreiche Anbieter ... mit unterschiedlichen Systemen

Diffusions-dicht Kondensat verhindernd

-hemmend ... begrenzend

-offen ... tolerierend

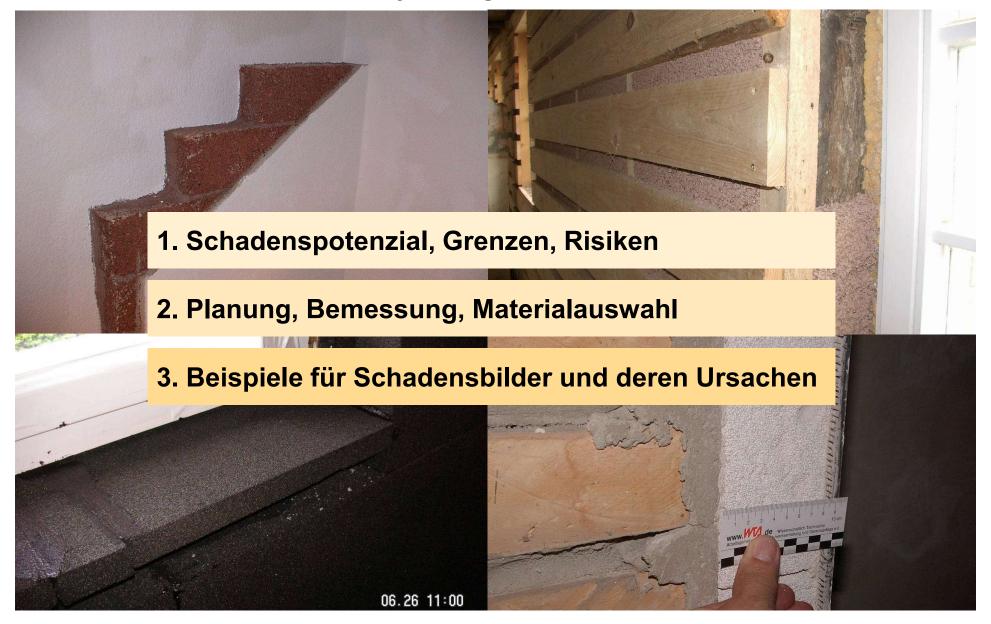
... Diffusionsverhalten (RAL-GZ 964)

Diffusionsoffen = Kondensat tolerierend Diffusion bremsend = Kondensat begrenzend Diffusionsdicht = Kondensat verhindernd

... Systemart (WTA-MB 8-5)

Plattendämmstoffe Vorsatzschalen Plastische Dämmstoffe

Innendämmsystemarten nach WTA-Merkblatt 8-5 (Fachwerk)


Tabelle 1: Bewertung von Innendämmungen im gesamten Systemaufbau

	1	2	3	4	5	6	7
	Erforderliche Systemdicke	Austrocknungs- potenzial	Tauwassertoleranz	Belastung durch Einbaufeuchte	Vermeidung von Feuchtekonvektion ¹	Schallschutz	Brandschutz
1. Plastische Dämmstoffe	Vi.						
1.1 Wärmedämmputz	0	•	•	0	•	0)3
1.2 Leichtlehm	0	•	•	0	•	0)3
1.3 Wärmedämmlehm	0	•	•	0	•	0)3
1.4 Verfüllmörtel	0	•	•	0	•	0)3
1.5 Zellulosefaserputz	•	•	0	0	•	0	0
2. Vorsatzschalen							
2.1 Gemauerte Vorsatzschalen	0		D 5	0	•	•)3
2.2 Trockenbaukonstruktion mit Dämmstoffmatten	•)1	0	\mathbb{O}^2	0	•)3
2.3 Holzrahmenbau-Konstruktion mit Einblasdämmung	•)6	•	•	•	•	0
3. Dämmplatten		D 21					
3.1 Holzwolle-Bauplatten	0		0	\mathbb{O}_2	●4	0)3
3.2 Calciumsilikat-Platten	0	•		\mathbb{O}_2	●4	0	•
3.3 Wärmedämmlehm-Platten	•	•	0	\mathbb{O}^2	●4	0	0
3.4 Holzweichfaser-Platten	•	0	0	D ²	4	0	0
3.5 Mineral-Dämmplatten	•	•)7	D 2	4	0	•
3.6 Schilf-Dämmplatten			0	D 2	4	0	0

Nicht nur auf den Wärmeschutz kommt es an!

Innendämmsysteme ganzheitlich betrachtet – aus Schäden lernen

Typische Schäden bei nachträglicher Innendämmung

Systematische Einteilung von Schadenskategorien

Schadensparameter		Sachschade <mark>n</mark>	Personenschaden	
Feuchte- und		Feuchtigkeit von außen		
Wärmeschutz _{Nutzung}		B <mark>ehinde<mark>rte Austroc</mark>knung</mark>		
_		Kondensation durch Diffusion Einb	Schimmelpi <mark>l</mark> zrisiko	
		Kondensation durch Konvektion		
		Kondensation an Anschlüssen		
Schall <mark>schutzührung</mark>		Verschlechterte Schalldäm <mark>mu</mark> ng	Lärmbelä <mark>stigung</mark>	
		Raumakustik	Physiologischer Einfluss	
Brandschutz		Ve <mark>rsch</mark> lechterter Feuerwi <mark>der</mark> stand	Körperverletzung	
Material		Emi <mark>ssionen in Raumlu</mark> ft Ben	Gesundheit	
Anschlüsse/Wärmebr		ücken	Geruchsbelästigung	
		Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit	
		Risse, Hohlste <mark>llen, Ablösungen</mark>	Körperverletzung	
??		??	??	

Fehlende Berücksichtigung der Schlagregenbelastung

Schadensbeispiel

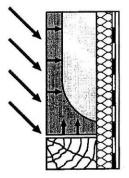
Schadensbeispiel

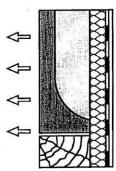
Feuchteschaden innen trotz kapillar gut saugender, diffusionsoffener Dämmplatte

Fehlende Berücksichtigung der Schlagregenbelastung

Typische Schäden bei nachträglicher Innendämmung

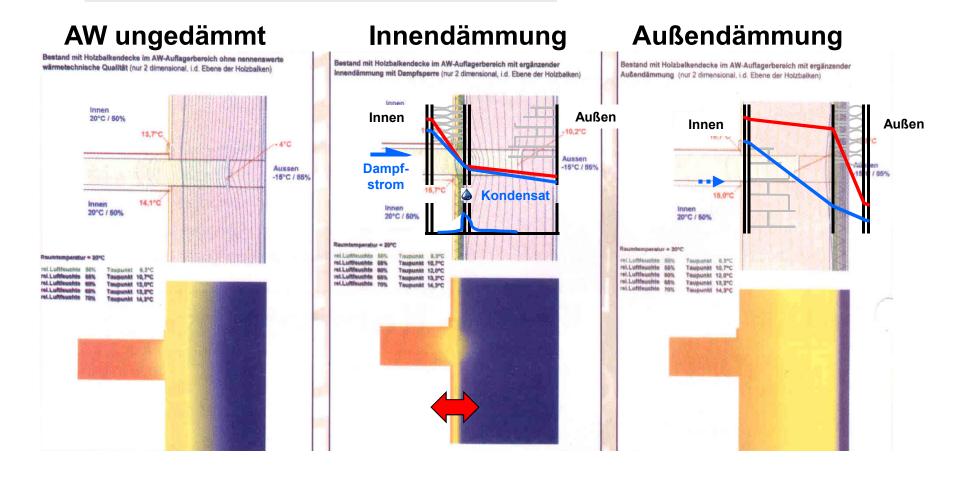
Systematische Einteilung von Schadenskategorien


Schadensparameter	Sachschaden Gehäude	Personenschaden
Feuchte- und	Feuchtigkeit von außen	
Wärmeschutz _{Nutzun}	Behinde <mark>rte Austroc</mark> knung	
	Kondensation durch Diffusion	Schimmelpi <mark>l</mark> zrisiko
	Kondensation durch Konvektion	
	Kondensation an Anschlüssen	
Schall <mark>schutz_{ührung}</mark>	Verschlechterte Schalldämmung	Lärmbelä <mark>s</mark> tigung
	Raumakustik	Physiologischer Einfluss
Brandschutz	Verschlechterter Feuerwiderstand	Körperverletzung
Material	Emissionen in Raumluft	Gesundheit
Anschlüsse/Wärmeb	rücken	Geruchsbelästigung
	Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit
	Risse, Hohlstellen, Ablösungen	Körperverletzung
??	??	??


Behinderung der Austrocknung nach innen

Beispiel Sichtfachwerk

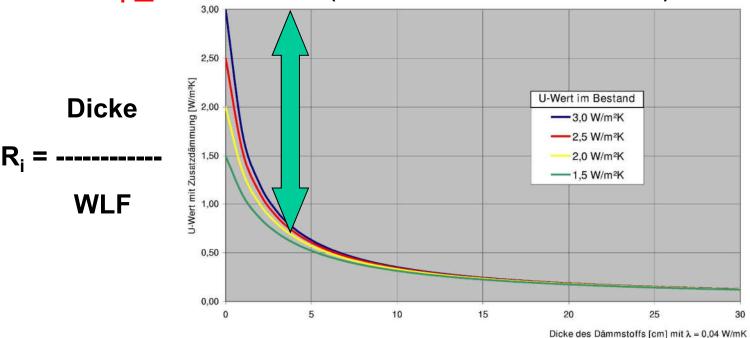
Trocknung (aus: Künzel)


Typische Schäden bei nachträglicher Innendämmung

Systematische Einteilung von Schadenskategorien

Schadensparameter	Sachschaden Gehäude	Personenschaden
Feuchte- und	Feuchtigkeit von außen	
Wärmeschutz _{Nutzun}	Behinderte Austrocknung	
	Kondensation durch Diffusion	Schimmelp <mark>i</mark> lzrisiko
	Kondensation durch Konvektion	
	Kondensation an Anschlüssen	
Schall <mark>schutz_{ührung}</mark>	Verschlechterte Schalldäm <mark>mu</mark> ng	Lärmbelä <mark>s</mark> tigung
	Raumakustik	Physiologischer Einfluss
Brandschutz	Verschlechterter Feuerwiderstand	Körperverletzung
Material	Emi <mark>ssionen in</mark> Raumluft	Gesundheit
Anschlüsse/Wärmeb	rücken	Geruchsbelästigung
	Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit
	Risse, Hohlstellen, Ablösungen	Körperverletzung
??	??	??

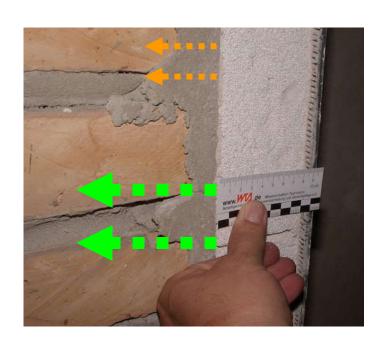
Nachträgliche Wärmedämmung

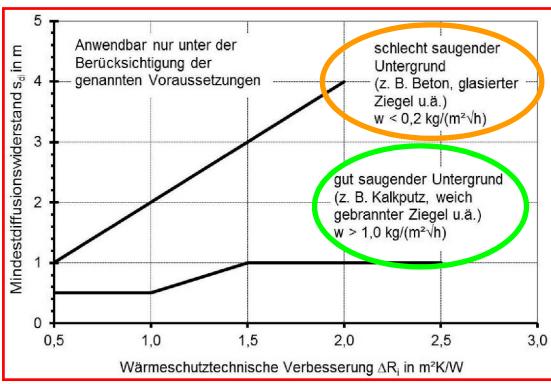


Vereinfachter Nachweis der Tauwasserbildung im Bauteil.

Ausreichend, wenn Konstruktion nach DIN 4108-3, Abschn. 5.3.

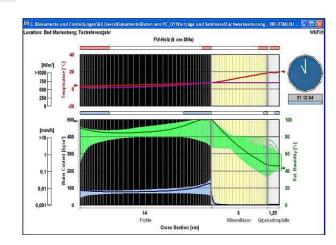
 $\rightarrow \Delta R_i \leq 1.0 \text{ m}^2 \text{K/W}$ (Fachwerk $\leq 0.8 \text{ m}^2 \text{K/W}$) und $s_{Di} \geq 0.5 \text{ m}$

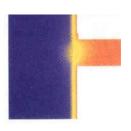



Vereinfachter Nachweis nach WTA-Merkblatt 6-4 (2016)

Ausreichend, wenn Konstruktion nach DIN 4108-3,
 Abschn 5.3. → ∆R_i ≤ 1,0 m²K/W und s_{Di} ≥ 0,5 m

Darüber hinaus:




Hygrothermische Bauteilsimulation

- Instationäre Berechnungen (realitätsnahes Klima).
- Mit Strahlungseinfluss (Dach, Nord, Süd, ...).

- Mit Kapillarität, Sorption, Diffusion.
- Hygrothermische Kennwerte der Baustoffe erforderlich!
- Sasierend auf WTA-MB 6-1-01/D sowie 6-2-01/D bzw. DIN EN 15026.

Bemessung mit Innendämmungs-"Ampel"

 Δ R_i > 2,0...2,5 m²K/W: hygrotherm. Simulation

Hoher energetischer Standard nur mit Bauphysiker – und WTA-Merkblatt 6-5!

Dicke

WLF

1,0 < ∆ R_i ≤ 2,0...2,5 m²K/W: nach WTA MB 6-4

Energetische Sanierung z.B. nach KfW möglich; Planung und Detailbetrachtung erforderlich – mit WTA-Merkblatt 6-4!

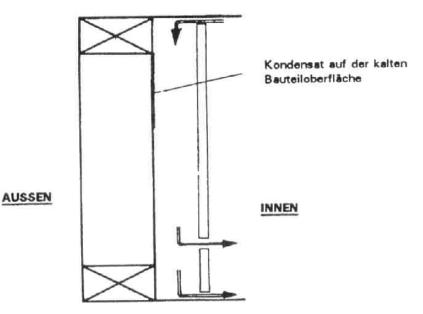
WLF = Wärmeleitfähigkeit

∆ R_i ≤ 0,8...1,0 m²K/W: nachweis-frei

Deutliche Reduzierung der Wärmeverluste, Erhöhung der Oberflächentemperaturen, Verbesserung der Behaglichkeit

Systematische Einteilung von Schadenskategorien

Schadensparameter	Sachschaden Gehäude	Personenschaden
Feuchte- und	Feuchtigkeit von außen	
Wärmeschutz _{Nutzur}	Behinderte Austrocknung	
	Kondensation durch Diffusion Einb	Schimmelpi <mark>l</mark> zrisiko
	Kondensation durch Konvektion	
	Kondensation an Anschlüssen	
Schall <mark>schutzührung</mark>	Verschlechterte Schalldäm <mark>mu</mark> ng	Lärmbelä <mark>s</mark> tigung
	Raumakustik	Physiologischer Einfluss
Brandschutz	Verschlechterter Feuerwiderstand	Körperverletzung
Material	Emissionen in Raumluft Ben	Gesundheit
Anschlüsse/Wärmel	rücken	Geruchsbelästigung
	Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit
	Risse, Hohlstellen, Ablösungen	Körperverletzung
??	??	??



Kondensation durch Konvektion

Gefahr von Tauwasser infolge Luftkonvektion

Raumseitige Leichtwandkonstruktionen

- Gefahr der Feuchtekonvektion in den Bauteilquerschnitt durch Fehlstellen und Anschlussfugen.
- Überschreitung der zulässigen Feuchtegehalte möglich

40

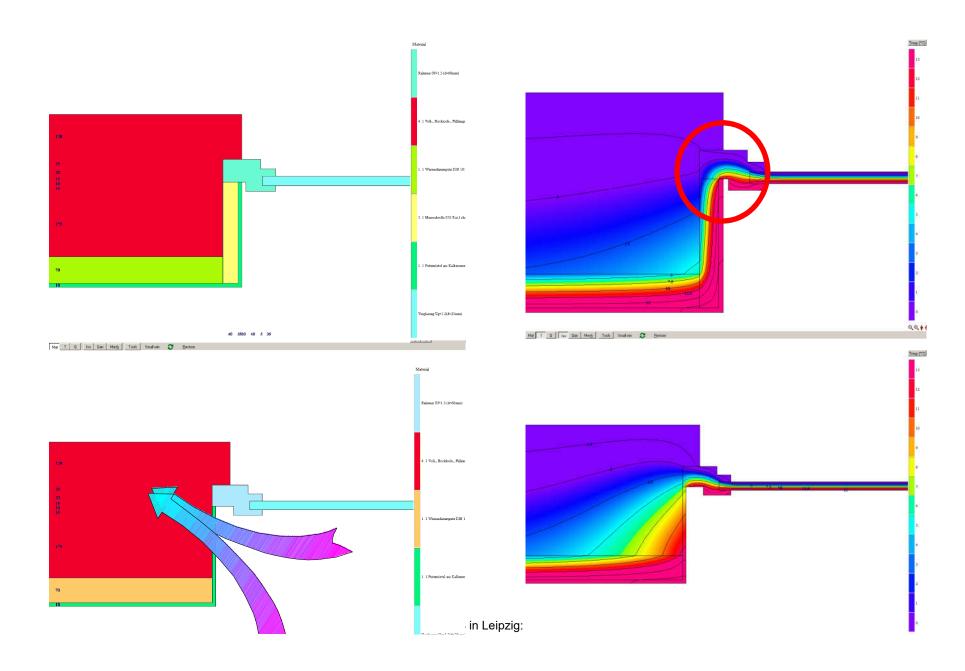
Gefahr von Tauwasser infolge Luftkonvektion

1.2018 in Leipzig: Besser innen dämmen – oder einfach zu riskant?

Kondensation durch Konvektion

Schadensprävention/vollflächige Ankopplung

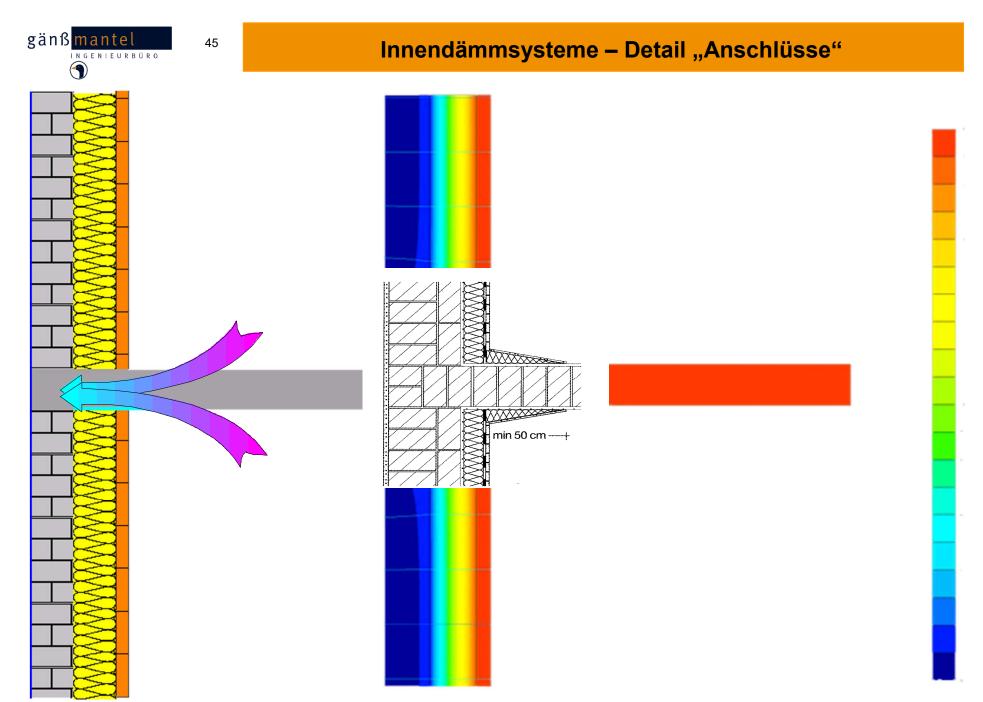
Branchentage des VDPM e.V. am 28./29.11.2018 in Leipzig: Besser innen dämmen – oder einfach zu riskant?



Typische Schäden bei nachträglicher Innendämmung

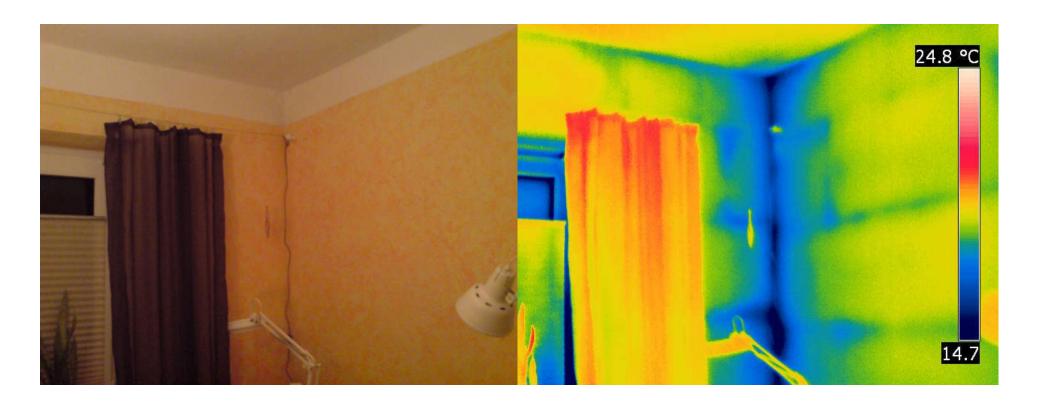
Systematische Einteilung von Schadenskategorien

Schadensparam	eter	Sachschaden Gehäude	Personenschaden
Feuchte- und		Feuchtigkeit von außen	
Wärmeschutz N	lutzung	B <mark>ehinderte Austroc</mark> knung	
		Kondensation durch Diffusion Einb	Schimmelpi <mark>l</mark> zrisiko
		Kondensation durch Konvektion	
		Kondensation an Anschlüssen	
Schall <mark>schutz</mark> ühru	ıng	Verschlechterte Schalldäm <mark>mu</mark> ng	Lärmbelä <mark>s</mark> tigung
		Raumakustik	Physiologischer Einfluss
Brandschutz		Ve <mark>rsch</mark> lechterter Feuerwi <mark>der</mark> stand	Körperverletzung
Material		Emissionen in Raumluft	Gesundheit
Anschlüsse/W	ärmebr	ücken	Geruchsbelästigung
		Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit
		Risse, Hohlste <mark>llen, Ablösungen</mark>	Körperverletzung
??		??	??


Innendämmsysteme – Detail "Anschlüsse"

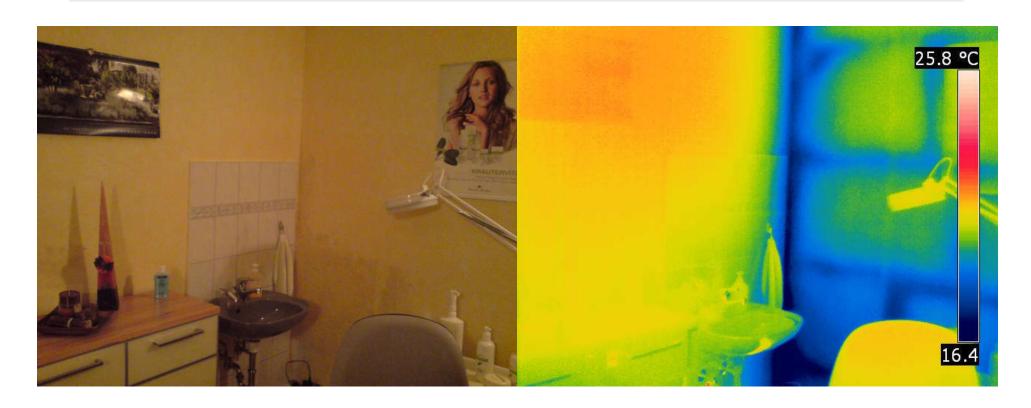
Kondensation an Anschlüssen

Bildquelle: Andreas Kramme, Bielefeld


Typische Schäden bei nachträglicher Innendämmung

Systematische Einteilung von Schadenskategorien

Schadensparameter	Feuchtigkeit von außen Behinderte Austrocknung Kondensation durch Diff Kondensation dur Kondensati Vers erter Feuerwiderstand sonen in Raumluft Sommerlicher Wärmeschutz	Person
Feuchte- und	Feuchtigkeit von außen	afus
Wärmeschutz _{Nutzun}	Behinderte Austrocknung	W Y I
	Kondensation durch Diff	G nelpil zrisiko
	Kondensation dur	
	Kondensati	
Schall <mark>schutzührung</mark>	Vers	Lärmbelä <mark>s</mark> tigung
	Mo	Physiologischer Einfluss
Brandschutz	erter Feuerwiderstand	Körperverletzung
Material	sion <mark>en in Raumlu</mark> ft _{Ben}	Gesundheit
Ansc	ücken	Geruchsbelästigung
	Sommerlicher Wärmeschutz	Mangelnde Behaglichkeit
	Risse, Hohlstellen, Ablösungen	Körperverletzung
??	??	??



Fehlende Innendämmung im Eckbereich

Fehlerhafter Wandanschluss, fehlende Dämmung, offene Stoßfugen

Nicht nur auf den Wärmeschutz kommt es an!

Innendämmsysteme ganzheitlich betrachtet – aus Schäden lernen

Schimmelpilzschäden vermeiden – ausreichend Wärme dämmen

Besser innen dämmen – oder einfach zu riskant?

Vielen Dank für's Zuhören

Büro Baden-Württemberg / Bayern

Silcherstr. 9

D-72358 Dormettingen / Zollernalb

fon +49-7427-914746

fax +49-7427-914964

Büro Rheinland-Pfalz / Saarland / Hessen

Waffenstr. 16 b

D-76829 Landau

fon +49.6341.9308610

mobil +49-170-5575229

email buero /at/ gaenssmantel.de

