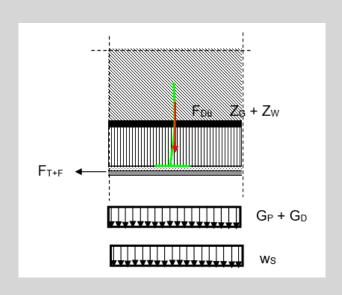
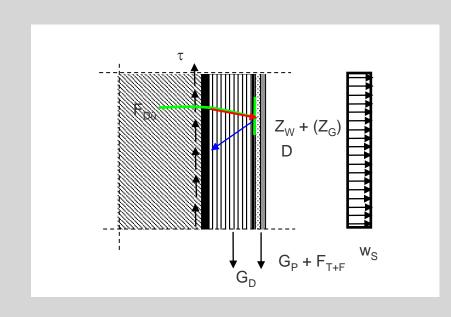


WDVS AN UNTERSICHTEN – Bamberg 12.09.2023 ANTJE PROFT – SAHLMANN & PARTNER GbR


Warum überhaupt?


Ist das an der Decke überhaut ein WDVS?

2 Dübel/m² mehr reichen doch?

Unwesentliche Abweichung?

Wird seit Jahren einfach gemacht!

§ 3 Abs. 1 MBO Grundanforderungen an Bauwerke (Standsicherheit, Brandschutz....)

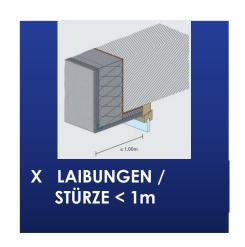
Im Aufbau kein Unterschied zwischen Decke und Wand – also auch WDVS

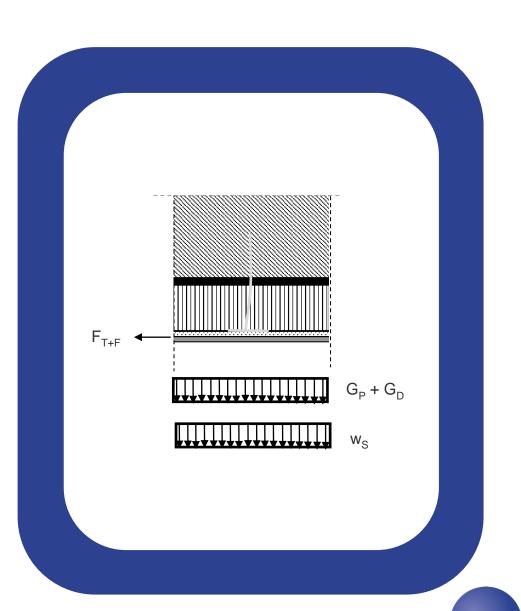
Bauordnungsrechtlicher Verwendbarkeitsnachweis für WDVS ist die AbZ / ABg

Zulassungen für WDVS enthalten Regelungen zur Decke

WDVS AN UNTERSICHTEN

Definition





Ermittlung der Einwirkung

- EIGENGEWICHT
- WINDSOG
- HYGROTHERMISCHE BELASTUNG

WDVS AN UNTERSICHTEN - STANDSICHERHEIT Ermittlung der Einwirkung – EIGENGEWICHT

- Gewicht der Dämmung (Rohdichte x Dicke)
- Gewicht der Putzschicht (Festmörtelrohdichte x Dicke)

```
Leichtes System:

80 mm Miwo 035: 0,08 m x 85 kg/m³ = 6,80 kg/m²

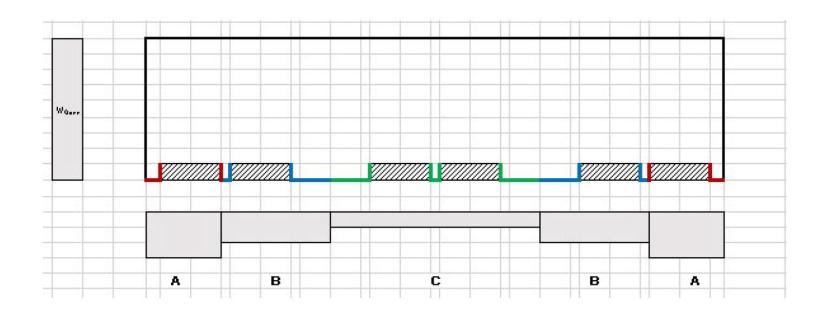
5 mm Putzsystem: 0,005 m x 1.500 kg/m³ = 7,50 kg/m²

14,30 kg/m²
```

```
Schweres System:

200 mm Miwo 035: 0,20 m x 150 kg/m³ = 30,00 kg/m²

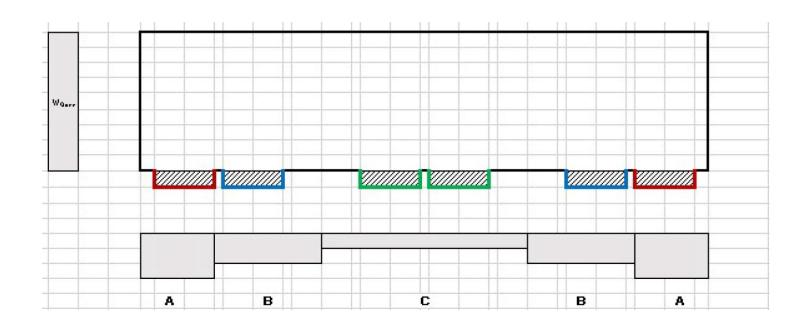
25 mm Putzsystem: 0,025 m x 1.500 kg/m³ = 37,50 kg/m²


67,50 kg/m²
```


Ermittlung der Einwirkung - WINDSOG

LOGGIEN

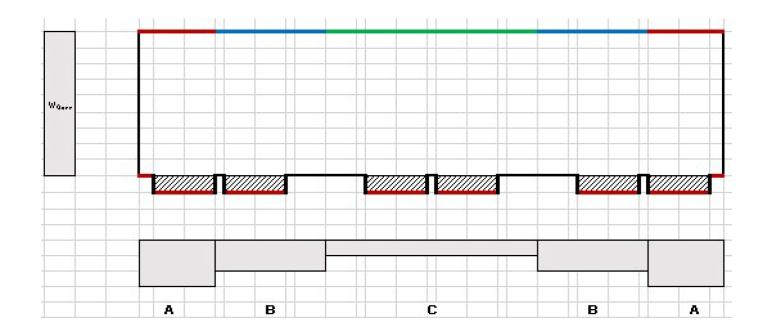
Windsog analog Wandfläche – Zone A/B/C analog Lage an Wand



Ermittlung der Einwirkung - WINDSOG

OFFENE BALKONE

Windsog analog Wandfläche – Zone A/B/C analog Lage an Wand



Ermittlung der Einwirkung - WINDSOG

GESCHLOSSENE BALKONE / ERKER

Windsog analog Wandfläche – immer Zone A

Ermittlung der Einwirkung - WINDSOG

LAUBENGÄNGE / ARKADEN

Bedingung

- 1 6 m Tiefe
- maximal 20% der Gebäudebreite

Windsog analog Wandfläche – Zone A/B/C analog Lage an Wand

Ermittlung der Einwirkung - WINDSOG

DURCHFAHRTEN, DURCHGÄNGE, PASSAGEN

Bedingung

- ≤ 25 m Gebäudehöhe
- Breite und Höhe maximal 30% der Gebäudebreite

Für Zone A/B/C: Sogbeiwert $c_{pe,1} = -2.2$

(höher als an Wänden – siehe Tabelle)

Windgeschwindigkeitsdruck q für Höhe Oberkante Durchfahrt ansetzen

Tabelle NA.1 — Außendruckbeiwerte für vertikale Wände rechteckiger Gebäude

Bereich	Α		В		С		D		E	
h/d	^С ре,10	^C pe,1	^С ре,10	^C pe,1	^С ре,10	^C pe,1	^С ре,10	^С ре,1	^С ре,10	^C pe,1
≥ 5	-1,4	-1,7	-0,8	-1,1	-0,5	-0,7	+0,8	+1,0	-0,5	-0,7
1	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,5	
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0,5		+0,7	+1,0	-0,3	-0,5

Für einzeln in offenem Gelände stehende Gebäude können im Sogbereich auch größere Sogkräfte auftreten.

Zwischenwerte dürfen linear interpoliert werden.

Für Gebäude mit h/d > 5 ist die Gesamtwindlast anhand der Kraftbeiwerte aus 7.6 bis 7.8 und 7.9.2 zu ermitteln.

Ermittlung der Einwirkung - WINDSOG

AUFGESTÄNDERTE GEBÄUDE

Bedingung

- ≤ 25 m Gebäudehöhe
- Höhe der Aufständerung ≤ 4 m

Sogbeiwert $c_{pe,1} = -1.2$ im Mittenbereich $c_{pe,1} = -1.6$ im Eckbereich (e/10) (teilweise höher als an Wänden – siehe Tabelle)

Windgeschwindigkeitsdruck a für Höhe Oberkante Aufständerung ansetzen

h	і А		ı	В	(;	D	E	
					C		 <i>c</i> .		C

Tabelle NA.1 — Außendruckbeiwerte für vertikale Wände rechteckiger Gebäude

Bereich	Α		В		С		D		E	
h/d	^С ре,10	^C pe,1	^С ре,10	^C pe,1	^С ре,10	^C pe,1	^С ре,10	^С ре,1	^С ре,10	^С ре,1
≥ 5	-1,4	-1,7	-0,8	-1,1	-0,5	-0,7	+0,8	+1,0	-0,5	-0,7
1	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,5	
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0,5		+0,7	+1,0	-0,3	-0,5

Für einzeln in offenem Gelände stehende Gebäude können im Sogbereich auch größere Sogkräfte auftreten. Zwischenwerte dürfen linear interpoliert werden

Für Gebäude mit h/d > 5 ist die Gesamtwindlast anhand der Kraftbeiwerte aus 7.6 bis 7.8 und 7.9.2 zu ermitteln.

Ermittlung der Einwirkung – HYGROTHERMISCHE BELASTUNG

Einwirkung von Temperatur und Feuchte geringer als an Wandflächen

Wirkung in Scheibenebene (Putz)

Nachweis der Eignung in Zulassungsverfahren für Wandflächen erbracht

KEINE BESONDERE BERÜCKSICHTIGUNG FÜR UNTERSICHTEN NOTWENDIG

Ermittlung der Widerstände – im Untergrund (Beton)

Nachweis des Dübels in der gerissenen Zugzone und auf Dauerlast

Prüfung	Untergrund	Bohrer	Temperatur	Konditionierung	Riss [mm]
Funktionsfähigkeit unter Dauerlast	C20/25	d _{cut,m}	normal (21°C)	Standard	-
charakt. Tragfähigkeit im gerissenen Beton	C20/25	d _{cut,m}	normal	Standard	0,20
Funktionsfähigkeit im gerissenen Beton	C20/25	d _{cut,max}	normal	Standard	0,35

Abweichungen in Details bei Dauer der Versuche und geforderten Lastniveaus im nationalen Verfahren im Vergleich zum im europäischen Verfahren nach EAD 330196-01-0604v01

Ermittlung der Widerstände – im Dämmstoff (Miwo)

Dübeldurchzug Dauerlast (Einzeldübel)

Verschiedene Lastniveaus zum Nachweis Standsicherheit und Gebrauchstauglichkeit

Schaumblock Dauerlast (Mehrfachverankerung)

Eine Laststufe mit minimaler und maximaler Dübelmenge zum Nachweis der Standsicherheit

Ermittlung der Widerstände – Ergebnis Zulassungstabelle

Systemeigen- gewicht gek [kg/m²]	15	20	25	30	35	40	45	50	55	60	65	70
charakt. Ein- wirkungen aus Wind w _{ek} [kN/m²]	Dübelmenge pro m²											
-0,55	6	6	6	6	6	6	7	7	7	8	8	8
-0,60	6	6	6	6	6	7	7	7	8	8	8	9
-0,65	6	6	6	6	7	7	7	8	8	8	9	9
-0,70	6	6	6	7	7	7	8	8	8	9	9	9
-0,75	6	6	7	7	7	8	8	8	9	9	9	9
-0,80	6	7	7	7	8	8	8	8	9	9	9	10
-0,85	7	7	7	8	8	8	8	9	9	9	10	10
-0,90	7	7	7	8	8	8	9	9	9	10	10	10
-0,95	7	7	8	8	8	9	9	9	10	10	10	11
-1,00	7	8	8	8	9	9	9	10	10	10	11	11
-1,05	8	8	8	9	9	9	10	10	10	11	11	11
-1,10	8	8	9	9	9	10	10	10	11	11	11	12
-1,15	8	9	9	9	10	10	10	11	11	11	12	12
-1,20	9	9	9	10	10	10	11	11	11	12	12	12
-1,25	9	9	10	10	10	11	11	11	12	12	12	12
-1,30	9	10	10	10	11	11	11	11	12	12	12	13
-1,35	10	10	10	11	11	11	11	12	12	12	13	13
-1,40	10	10	10	11	11	11	12	12	12	13	13	13
-1,45	10	10	11	11	11	12	12	12	13	13	13	14

Derzeit ausschließlich Verdübelung durch das Gewebe in Mineralwolle mit verschiedenen Tellerdübeln in mineralischen Untergründen zugelassen

Sicherheitsfaktoren für

- Dauerlast
- Tragfähigkeit im Riss
- Lasteinwirkung ständige Last (Eigengewicht)
- Lasteinwirkung veränderliche Last (Wind)

bereits in Tabelle enthalten.

WDVS AN UNTERSICHTEN

Brandschutz und Schallschutz

- Anforderungen an die einzelnen Teile der Gebäude regelt die MVV-TB in Verbindung mit der MBO und den jeweiligen länderspezifischen Bestimmungen
- AbZ enthalten keine gesonderten Regelungen zum Brandschutz oder Schallschutz an Untersichten
- Bisher ausschließlich Mineralwolle-Dämmung hinsichtlich Standsicherheit geprüft und zugelassen

Vielen Dank für Ihre Aufmerksamkeit