WDVS - Planungsatlas

- Entwicklung eines vereinfachten Systems zur Wärmebrückenberechnung bei Bauelementen -

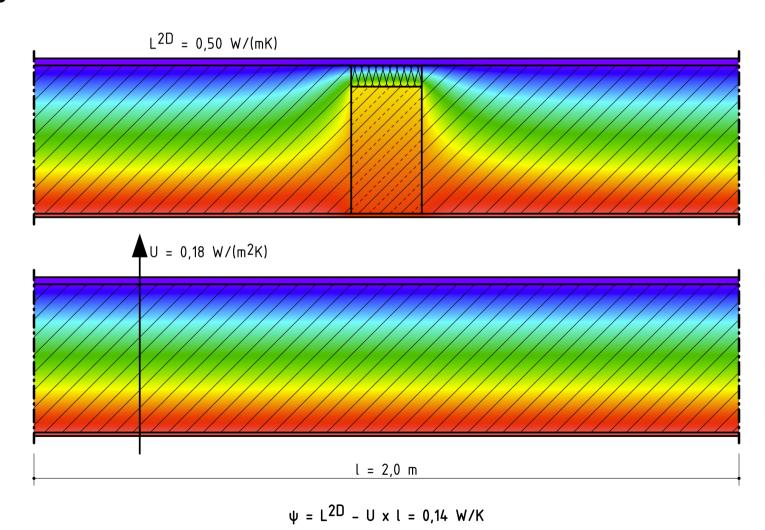
Prof. Dr.-Ing. habil. Kai Schild

Wärmebrücken - energetische Konsequenzen

Berücksichtigung im Transmissionswärmeverlust

$$H_T = \sum_{i=1}^{n} (U_i \cdot A_i) + H_u + L_s + H_{WB} + \Delta H_{T,FH} \text{ in } \frac{W}{K}$$

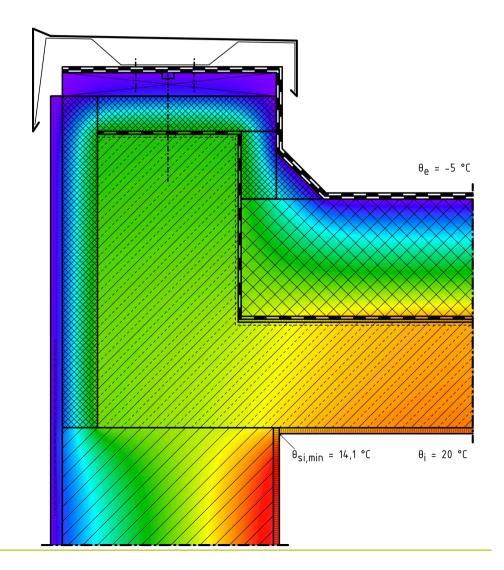
Pauschale Berücksichtigung von Wärmebrückeneffekten (→ DIN 4108, Beiblatt 2)


$$H_{WB} = \Delta U_{WB} \cdot A \text{ in } \frac{W}{K}$$

Detaillierte Berücksichtigung von Wärmebrückeneffekten

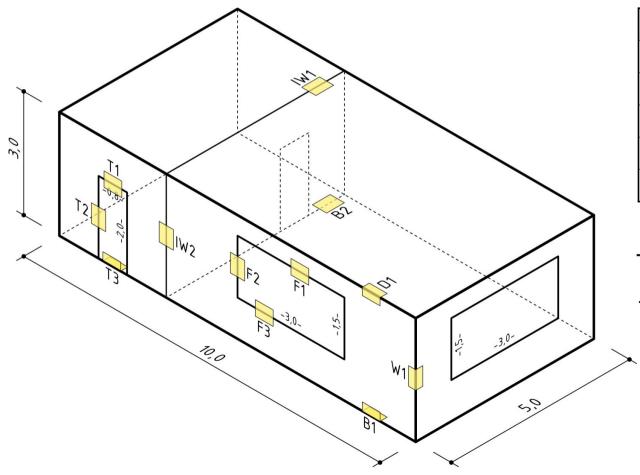
$$H_{WB} = \sum_{j=1}^{k} (\psi_j \cdot I_j)$$
 in $\frac{W}{K}$

Exkurs: Längenbezogener Wärmedurchgangskoeffizient ψ Berechnung



Wärmebrücken - hygrothermische Konsequenzen

Einhaltung einer Mindest-Oberflächentemperatur

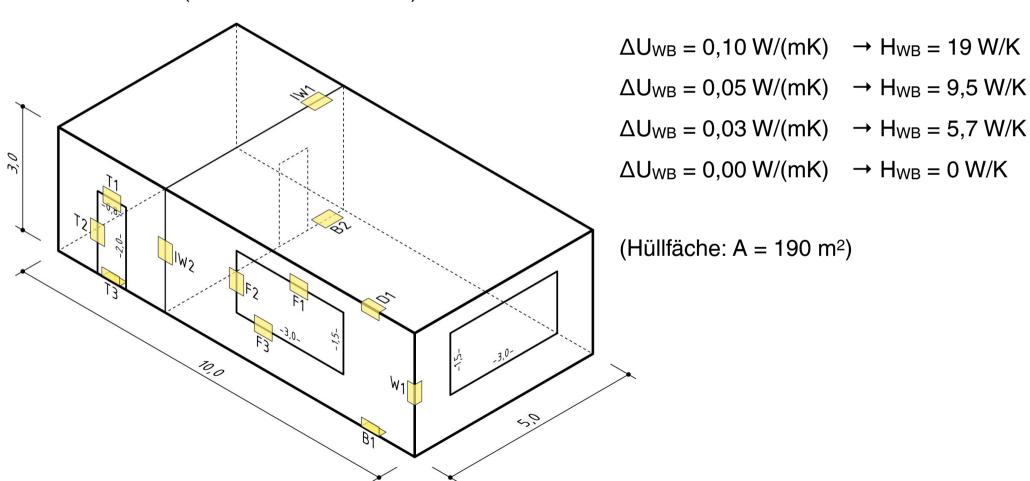

→ An jeder Stelle der raumseitigen Oberfläche ist eine Temperatur von mindestens 12,6 °C einzuhalten!

Wärmeverlust über die Hüllfläche eines Gebäudes

Beispiel: Bungalow

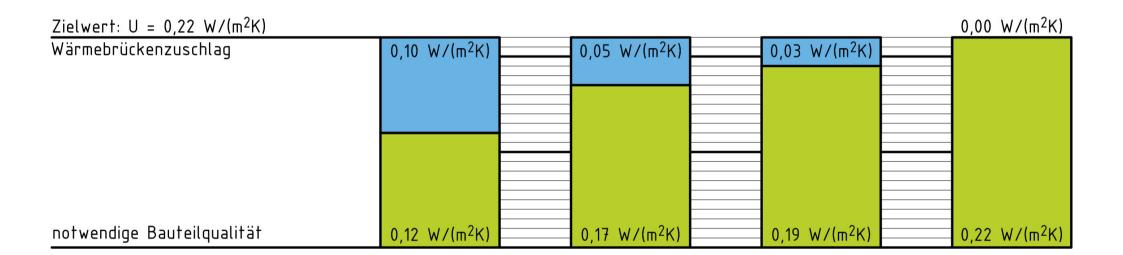
Regel-Bauteilflächen

Bauteil	U-Wert		
Flachdach	U _D	=	0,19 W/(m ² K)
Außenwand	U _{AW}	=	0,22 W/(m ² K)
Fenster	Uw	=	1,1 W/(m ² K)
Tür	U _{Tür}	=	2,0 W/(m ² K)
Bodenplatte	U _G	=	0,33 W/(m ² K)


Transmissionswärmeverlust

$$\rightarrow$$
 H_{T,RB} = 50 W/K

Wärmeverlust über die Hüllfläche eines Gebäudes


Beispiel: Bungalow

Anschlussdetails (Wärmebrückeneffekte)

Auswirkung des Wärmebrückenzuschlags Beispiel

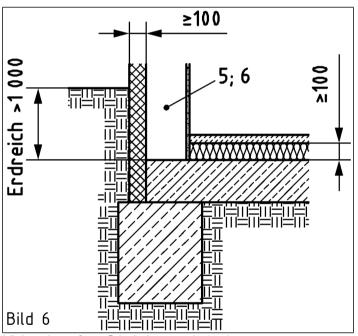
notwendige Dämmschichtdicke (035)

28 cm

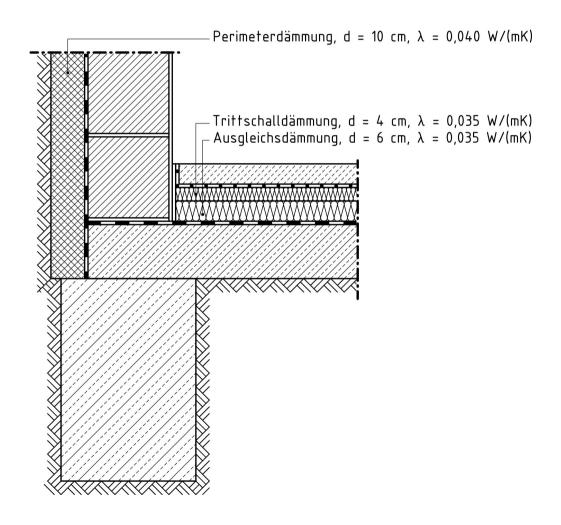
20 cm

18 cm

15 cm

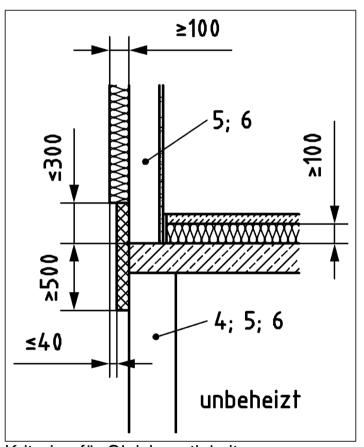

Bbl.2, Kat. A

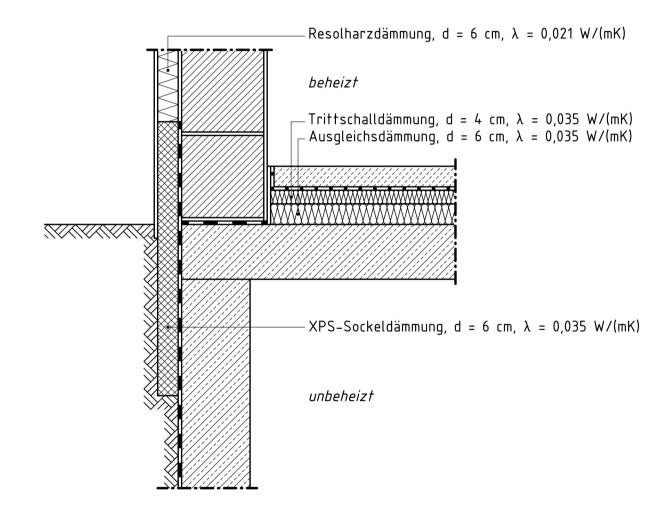
Bbl.2, Kat. B


Gleichwertigkeitsnachweis

1. Möglichkeit: Zuordnung des Konstruktionsprinzips

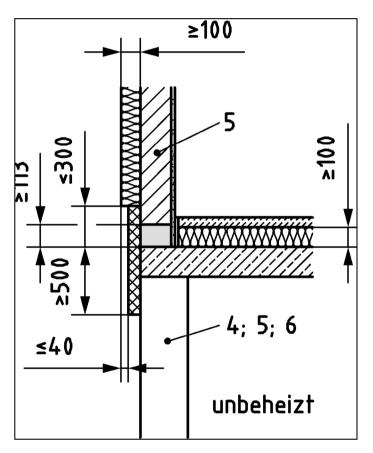
Kriterien für Gleichwertigkeit

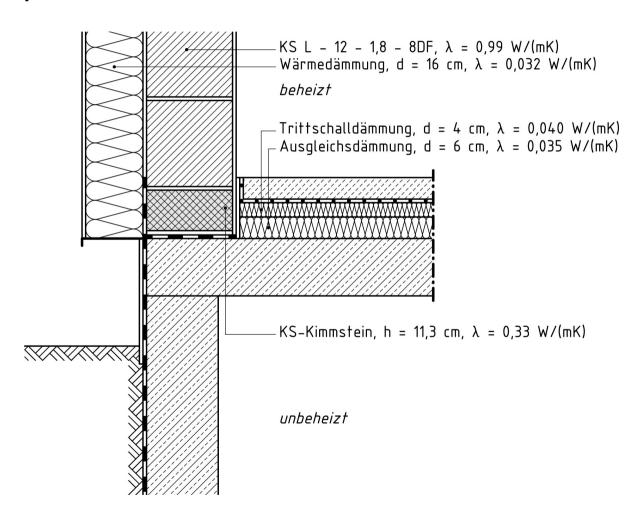

- Perimeterdämmung (040): d ≥ 100 mm
- Bodenplattendämmung (035):d ≥ 100 mm
- Wanddicke ist kein Kriterium, da unvermaßt


Gleichwertigkeitsnachweis

2. Möglichkeit: Äquivalenter Wärmedurchlasswiderstand

Kriterien für Gleichwertigkeit


- Außenwanddämmung (035): d ≥ 100 mm
- Bodenplattendämmung (035): d ≥ 100 mm


Gleichwertigkeitsnachweis

3. Möglichkeit: Nachweis des Referenz-ψ-Wertes

- $\psi_{\text{Ref (Kat. A)}} = 0.31 \text{ W/(mK)}$
- $\Psi_{Ref (Kat. B)} = 0.15 \text{ W/(mK)}$

Hybrider Rechenansatz

Anwendung bei "Problemfällen"

Fall 1: Mindestens ein Detail ist zu schlecht (nicht gleichwertig) für Kategorie "A" oder "B"

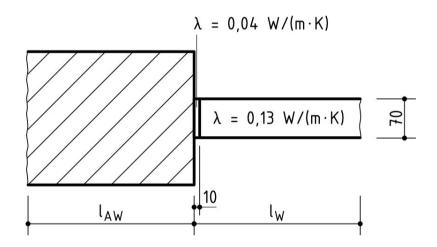
Beispiel für Kategorie B:
$$\Delta U_{WB} = \Delta \Delta U_{WB} + 0,03 = \frac{\sum_{i} \left(\Delta \psi_{i} \cdot I_{i} \right)}{A} + 0,03$$
 in $\frac{W}{m^{2}K}$

• Fall 2: Mindestens ein Detail ist nicht in Beiblatt 2 enthalten

Beispiel für Kategorie B:
$$\Delta U_{WB} = \Delta \Delta U_{WB} + 0,03 = \frac{\sum_{i} (\psi_{i} \cdot I_{i})}{A} + 0,03$$
 in $\frac{W}{m^{2}K}$

Begriff und Arten der Berücksichtigung

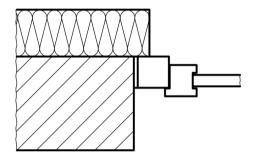
Bauelemente gemäß Beiblatt 2 sind

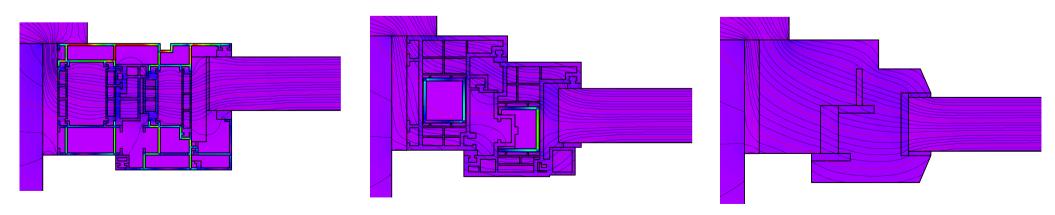

- Fenster, Fenstertüren, Türen
- Rollladenkästen
- Dachflächenfenster
- Lichtkuppeln und
- Vorhangfassaden.

Die Berücksichtigung im Wärmebrückennachweis kann wie folgt erfolgen:

- Nutzung der Ersatzsysteme ("Blockmodelle") gemäß Beiblatt 2, Abschnitt 6.2 oder
- Nutzung detaillierter Rechenmodelle
 - Referenzbauteile gemäß Beiblatt 2, Anhang F oder
 - reale Geometrien und Materialien gemäß Herstellerangabe

Ersatzsystem ("Blockmodell") für Fenster, Fenstertüren, Türen


Die am "Blockmodell" berechneten Ergebnisse werden wie folgt bezeichnet, um die Herkunft der Daten kenntlich zu machen:


- niedrigste Temperatur auf der Innenoberfläche: θ_{si,rechn,Ers}
- längenbezogener Wärmedurchgangskoeffizient: ψ_{rechn,Ers}

Ersatzsystem ("Blockmodell") für Fenster, Fenstertüren, Türen

Querleitungseffekte - Beispiel: Fensterlaibung, außen gedämmte Wand, Alu-, Kunststoff-, Holzrahmen

→ Blockmodell kann diese Unterschiede nicht abbilden

Ersatzsystem ("Blockmodell") für Fenster, Fenstertüren, Türen

Korrekturwerte $\Delta\theta_{si}$ für Fensteranschlüsse bei Verwendung des "Blockmodells"

Rahmenmaterial		Korrekturwerte Δθ _{si} in K			
	Brüstung	Laibung	Sturz		
Holz / Kunststoff	-1,5	-0,5	-0,5		
Metall	-0,5	-3,0	-3,0		

$$\theta_{\rm si} = \theta_{\rm si,rechn,Ers} + \Delta \theta_{\rm si}$$

Ersatzsystem ("Blockmodell") für Fenster, Fenstertüren, Türen

Korrekturwerte für ψ für Fensteranschlüsse bei Verwendung des "Blockmodells"

	Fensterlaibung		Überdämmung ≥ 3 cm (inklusive 1 cm Fuge) gilt auch für Fenster mit Führungsschienen			
226	Außenwand außengedämmt	4; 5; 6	(direkt auf dem Blend- rahmen befestigte Führungsschienen dürfen die Außenkante des Blendrahmens nicht überschreiten) Fensterlage gilt für Achsmaß (Mitte) des Blendrahmens in der äußeren Hälfte der Tragschale	$\Psi_{\text{ref,Ers}}$ ≤ 0.08 / $\Psi_{\text{ref,det}}$ ≤ 0.18	A	Tabelle 108, Zeile 27

$$\psi = \psi_{\text{rechn,Ers}} + \left(\psi_{\text{ref,det}} - \psi_{\text{ref,Ers}}\right)$$

Ersatzsystem ("Blockmodell") für Fenster, Fenstertüren, Türen

Wann sind welche Korrekturwerte zu berücksichtigen?

Fall 1 - Gleichwertigkeitsnachweis über Referenz-ψ-Wert

• bei Berechnung mit "Blockmodell"

→ Vergleich: $\psi_{\text{rechn,Ers}} \leq \psi_{\text{ref,Ers}}$

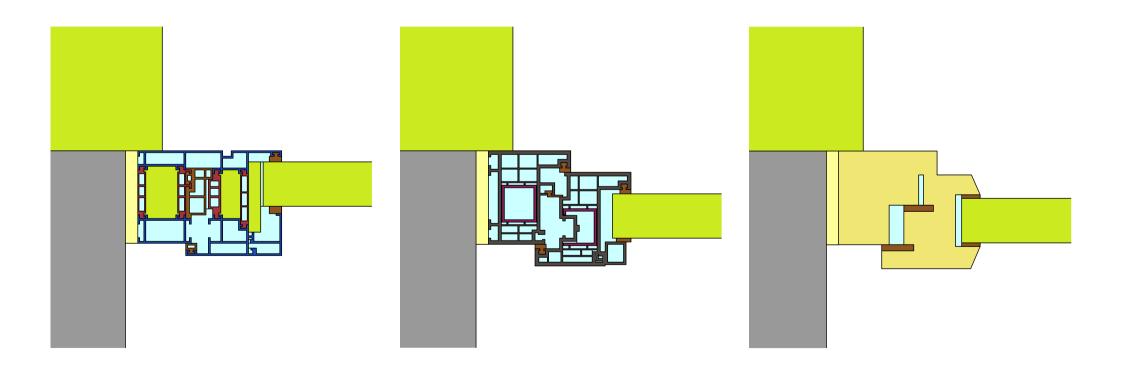
bei Verwendung eines detaillierten Rechenmodells

 \rightarrow Vergleich: $\psi_{\text{rechn,det}} \leq \psi_{\text{ref,det}}$

Fall 2 - Detaillierte Wärmebrückenberechnung

bei Berechnung mit "Blockmodell"

$$\rightarrow \psi = \psi_{\text{rechn,Ers}} + (\psi_{\text{ref,det}} - \psi_{\text{ref,Ers}})$$


$$\rightarrow \theta_{\rm si} = \theta_{\rm si,rechn,Ers} + \Delta \theta_{\rm si}$$

• bei Verwendung eines detaillierten Rechenmodells

→ keine Korrektur notwendig

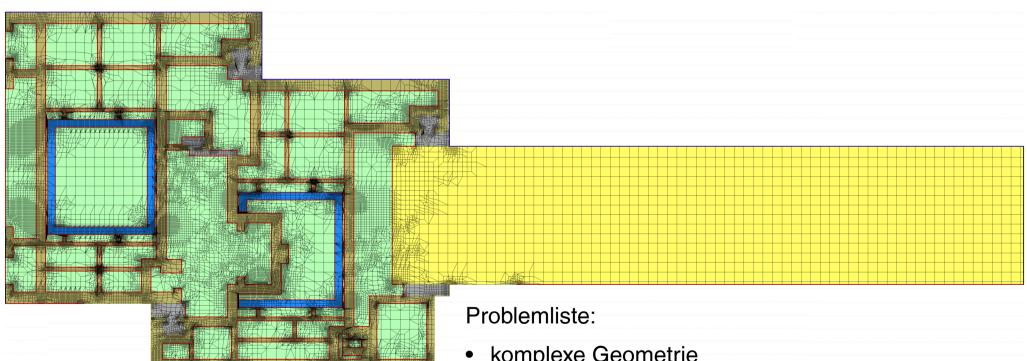
Referenzbauteile für Fenster, Fenstertüren, Türen

Aluminium-, Kunststoff-, Holzrahmen (Beispiele)

Referenzbauteile für Fenster, Fenstertüren, Türen

Vorteile

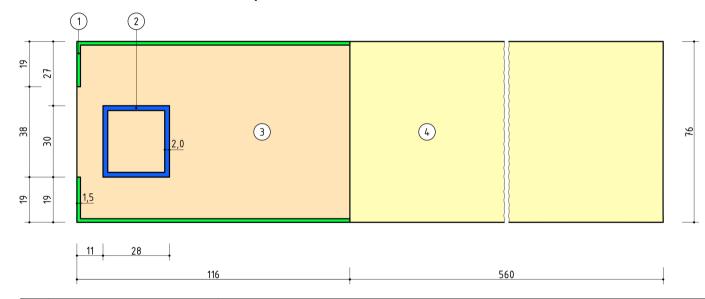
- Realitätsnahe Bewertung der Wärmeverluste und Oberflächentemperaturen
- Anwendung erfordert keine Strafzuschläge


Nachteile (siehe auch nächste Folie)

- aufwändige Eingabe in Berechnungssoftware
- komplexes Rechenmodell
 - → Netzdichte manuell wählen!, lange Berechnungszeit, 1%-Genauigkeit nicht immer machbar
- Luftgefüllte Hohlräume aufwändig zu modellieren (Randbedingungen auf inneren Oberflächen)
- Parametrierte Modellierung nicht möglich (→ Wärmebrückenatlanten)

Referenzbauteile für Fenster, Fenstertüren, Türen

Beispiel: Rechenmodell für Referenz-Kunststoffrahmen



- komplexe Geometrie
- hohe Netzdichte
- Rahmenhohlräume
- Oberflächenrandbedingungen

Vereinfachtes "universelles Ersatzmodell"

Fensterrahmen, Modellparameter

Schild, K.; Schild, B.: Wärmebrückenberechnung für Bauelemente - Entwicklung vereinfachter universeller Ersatzsysteme. Bauphysik 43, Heft 4, Seiten 258 - 269, Verlag Ernst & Sohn, Berlin

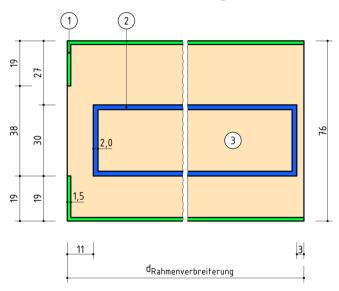
Schild, B.; Schild, K.: Forschungsbericht E20-011 - Entwicklung eines vereinfachten Systems zur Bewertung von Wärmebrücken bei Anschlüssen mit Bauelementen.


ENOTHERM GmbH, 2020 (finanziert durch den Verband für Dämmsysteme, Putz und Mörtel e.V. (VDPM), Berlin). Auf www.wdvs-planungsatlas.de veröffentlicht

	Pozoiohnung		Wärmeleitfähigkeit in W/(mK)				
	Bezeichnung	Aluminiumrahmen	Kunststoffrahmen	Holzrahmen Brüstung	Holzrahmen Laibung und Sturz		
1	Rahmenschenkel	160	0,23	0,16	0,13		
2	Kern	0,13	50	0,16	0,13		
3	Rahmenfüllmaterial	0,13	0,13	0,16	0,13		
4	Glaspaket	0,074	0,074	0,074	0,074		

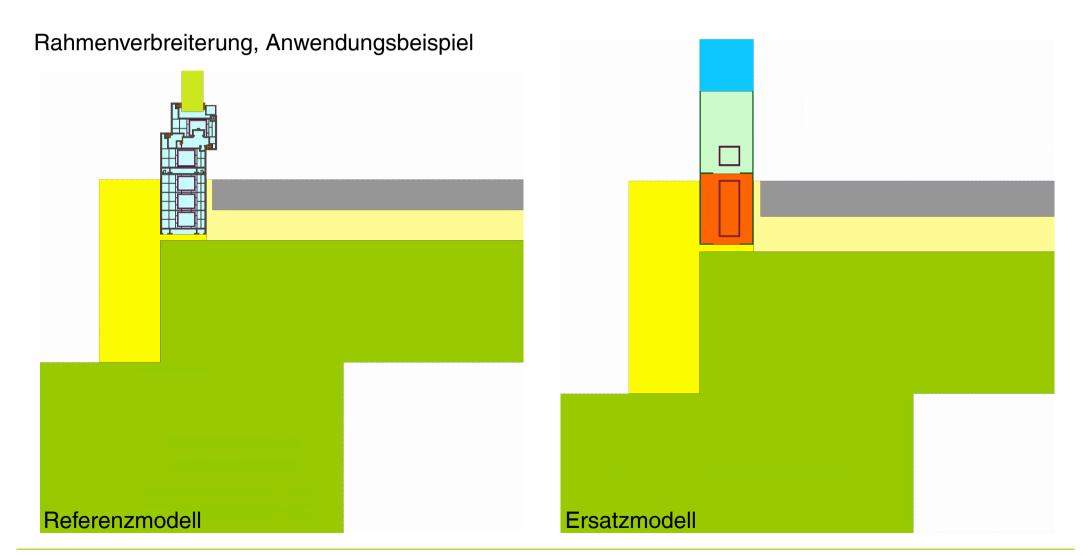
Vereinfachtes "universelles Ersatzmodell"

Anwendung im WDVS-Planungsatlas

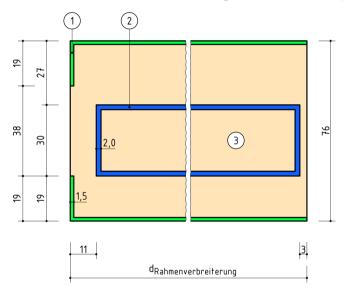


	Fensterlaibung		Überdämmung ≥ 3 cm (inklusive 1 cm Fuge) gilt auch für Fenster mit Führungsschienen		A	Tabelle 108, Zeile 27
226	Außenwand außengedämmt	4; 5; 6	(direkt auf dem Blend- rahmen befestigte Führungsschienen dürfen die Außenkante des Blendrahmens nicht überschreiten) Fensterlage gilt für	$ \psi_{\text{ref,Ers}} $ $ \leq 0.08 $ $ / \psi_{\text{ref,det}} \leq 0.18 $		
			Achsmaß (Mitte) des Blendrahmens in der äußeren Hälfte der Tragschale			
	Fensterlaibung Außenwand		Überdämmung ≥ 3 cm (inklusive 1 cm Fuge)			
227	außengedämmt	≥30	gilt auch für Fenster mit Führungsschienen (direkt auf dem Blend-	$\Psi_{\text{ref,Ers}} \le 0.02$		
	Blendrahmen in Dämmebene	\	rahmen befestigte Führungsschienen dürfen die Außenkante des Blendrahmens nicht überschreiten)	$\psi_{\text{ref,det}}$ ≤ 0.07		Tabelle 108, Zeile 27
			Fensterlage gilt für Blendrahmen vollständig in der Dämmebene			

Vereinfachtes "universelles Ersatzmodell"


Rahmenverbreiterung, Modellparameter

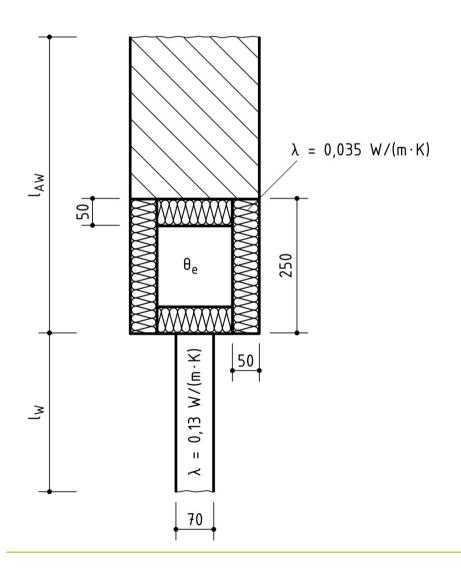
	Pozoiobnung		Wärmeleitfähigkeit in W/(mK)						
	Bezeichnung	Aluminiumrahr	nen	Kunststoffrahmen		Holzrahmen			
		20 mm ≤ d ≤ 50 mm	d > 50 mm	20 mm ≤ d ≤ 50 mm	d > 50 mm	20 mm ≤ d ≤ 50 mm	d > 50 mm		
1	Rahmenschenkel	0,23	0,23	0,23	0,23	0,15	0,17		
2	Kern	50	50	50	50	0,15	0,17		
3	Rahmenfüllmaterial	0,07	0,06	0,07	0,08	0,15	0,17		


Vereinfachtes "universelles Ersatzmodell"

Vereinfachtes "universelles Ersatzmodell"

Rahmenverbreiterung, Sohlbankprofil, Modellparameter

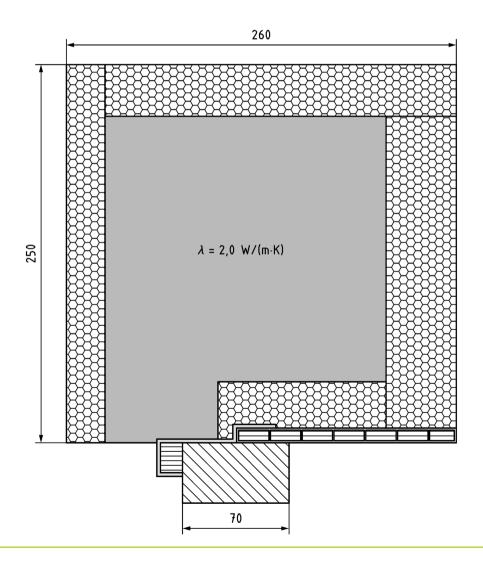
Aluminiumrahmen: d_{Rahmenverbreiterung} = 45 mm


Kunststoffrahmen: d_{Rahmenverbreiterung} = 30 mm

Holzrahmen: d_{Rahmenverbreiterung} = 30 mm

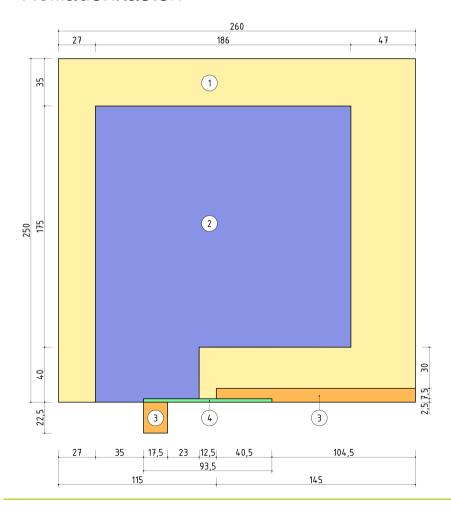
	Pozoiohnung	Wärmeleitfähigkeit in W/(mK)				
	Bezeichnung	Aluminiumrahmen	Kunststoffrahmen	Holzrahmen		
1	Rahmenschenkel	0,23	0,23	0,15		
2	Kern	50	0,22	0,15		
3	Rahmenfüllmaterial	0,09	0,22	0,15		

Ersatzsystem ("Blockmodell") für Rollladenkästen



Hier keine Strafzuschläge, aber Ergebnisse liegen auf der sicheren Seite

→ für reale System unwirtschaftliche Abschätzung



Referenzbauteile für Rollladenkästen Beispiel

Vereinfachtes "universelles Ersatzmodell"

Rollladenkasten

		Wärmeleitfähigkeit in W/(mK)				
	Bezeichnung	Aluminium- rahmen	Kunststoff- rahmen	Holzrahmen		
1	Dämmung	0,035	0,035	0,035		
2	Rollraum	2	2	2		
3	Füllmaterial F1	0,06	0,14	0,10		
4	Füllmaterial F2	0,5	0,06	0,17		

Fazit

- ① GEG bzw. Beiblatt 2 erfordert Umdenken bei der Wärmebrückenbewertung
- 2 Detaillierte Wärmebrückenbewertung ist essentiell für kostengünstiges Bauen
- 3 Blockmodell hat in der aktuellen Form keine Zukunft
- 4 Ersatz-Rechenmodell stellt deutliche Arbeitserleichterung für die Praxis dar
- 5 WDVS-Planungsatlas bietet komfortable Arbeitshilfe ohne Strafzuschläge